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PARTIAL  REFLECTIONS OF RADIO  WAVES  FROM THE  LOWER IONOSPHERE 

by Denis J. Connolly  and B. Samuel  Tanenbaum* 

Lewis  Research  Center 

SUMMARY 

The  addition of phase  difference  measurements  to  lower  ionosphere (50 to 100 km) 
partial  reflection  experiments is discussed and some  advantages  in  measuring  electron 
density  this way a r e  pointed out. In particular,  the  determination of electron  density 
through  phase  difference  measurements is less sensitive  to  errors in the  assumed  col- 
lision  frequency  profile. Both electron  density  and  collision  frequency  can  be  deter- 
mined  through measurements of differential  absorption and phase  shift. 

In partial  reflection  experiments,  the  reflections  are  usually  treated as simple 
Fresnel  reflections  from a plane  interface. A more  reasonable  one-dimensional  model 
for  the  reflecting  layers is an  Epstein  profile. It is shown that  the  ratio of reflection 
coefficients, as calculated  for this type of profile,  can  differ  appreciably  from  the  re- 
sult  given  by  Fresnel  reflection. 

The  effect of mode  coupling  in  the  reflection  process is also  considered.  It is found 
to be a fairly  small  effect which increases in importance with increasing  electron  den- 
sity. Mode coupling  could  contribute  appreciable e r r o r s  in  differential  absorption  ex- 
periments if the  electron  density  approaches 10 per cubic  centimeter. 4 

INTRODUCTION 

The  differential  absorption of the two  magnetoionic  modes  has  been  used  to  study 
the  lower  ionosphere  since 1953 (ref. 1). Radio  waves  in  the  frequency  range  from 
about 2 to 6 megahertz  (usually  close  to 2. 5 MHz) are  transmitted up into  the  atmos- 
phere.  Ionization  irregularities  in  the 50- to  100-kilometer  height  range  give rise  to 
partial  reflections  in  this  frequency  range on a fairly  regular  basis  (refs. 2 to 4). The 
reflected  waves are  resolved  into  ordinary and extraordinary  components  by  the  receiv- 
ing  equipment  used.  The  amplitudes of the two components are  recorded as functions 
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of apparent  height. One can  then  calculate  an  electron  density  profile  by  using  an as- 
sumed  model  for  the  reflection  mechanism,  an  assumed  collision  frequency  profile,  and 
the  experimental  curve of amplitude  ratio  against  height.  The  reasonableness of the 
assumptions  used is discussed in reference 5. Some of these  assumptions will be con- 
sidered  in  greater  detail in this  report. 

It has been  pointed out  in reference 6 that the  phase  angle  between  the two modes 
would also  provide  useful  information. A sufficiently  accurate  measurement of both  the 
differential  absorption  and  differential  phase  shift would determine both the  electron 
density and collision  frequency  profiles.  The  value of the  technique h a s  been  further 
discussed  in  references 7 to 9. Reference 10 describes a method  whereby  the  phase 
difference is obtained  indirectly  through  measurements of the power  received by linearly 
polarized  antennas with different  directions of polarization.  The  method  presented  in 
reference 10 appears  to  be  strictly  applicable only when the  quasi-longitudinal  approxi- 
mation is valid  (the two wave polarizations  are  taken as d in  eq. (9) of ref. 10). In the 
H F  band (2  to 6 MHz), the validity of th i s  approximation  varies widely with magnetic 
latitude. A direct  measurement of phase  difference would not have this limitation. 

The  differential  phase and differential  absorption  techniques a r e  outlined  in  the  fol- 
lowing sections.  The  theoretical  basis of the two techniques is briefly  described.  The 
reflection  mechanism is then discussed  from  the  simple  Fresnel  reflection viewpoint. 
Most of this  report  concerns  corrections  to  this  simple  approach. 

Recent  discussions have centered on the  use of the  phase-difference  method  to  study 
the  reflection  producing  irregularities. In this  report,  the  dependence of differential 
absorption and differential  phase  shift on the  electron  density  and  collision  frequency in 
the  medium is discussed. It is shown, by a fairly  simple  theoretical  discussion,  that 
the  phase  difference  method has a number of important  potential  advantages  over  the 
differential  absorption  method. 

The  reflection  process is also examined  in some  detail. First, the  magnitude of 
e r r o r s  to  be  expected if the  vertical  scale of the  irregularities is not small  compared 
to a wave length is calculated  by  assuming  an  Epstein  profile.  Then,  the  possibility of 
e r r o r s  due  to  mode coupling  in the  reflection  process is considered. 

All the  scattering  calculations of this  report  treat  steady-state  reflections  from a 
single  horizontally  uniform  scattering  region. In an  experimental  situation,  the  radar 
system  transmits  pulses and accepts  returns  from a large  volume of space.  The  plasma 
properties in this volume vary  from point to point, as well as with time.  Therefore, 
some  effects of finite  pulses on a partial  reflection  experiment  are  discussed. Also 
discussed, in a qualitative way, a r e  the  respects in which the  theory  might  be  modified 
to  account  for  more  realistic  reflecting  irregularities. Appendix A contains a list of 
the  symbols  used  in  this  report.  Appendixes B and C provide  background  information 
and  calculations  referred  to in the  text. 
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OUTLINE OF PARTIAL REFLECTION METHOD 

Basis of Differential  Absorption  and  Differential  Phase  Techniques 

In the  partial  reflection  experiments,  pulsed  radio  waves  are  transmitted  upwards 
into  the  ionosphere.  Both  magnetoionic  modes are transmitted  either  simultaneously or 
on alternate  pulses.  Small  amounts of the  power in each  mode are reflected  from  irreg- 
ularities  in  the  lower  ionosphere.  The  electric  field  reflection  coefficients  referred  to 
the  ground are  (ref.  11, p. 136) 

where Ro and Re are  the  reflection  coefficients  for  ordinary  and  extraordinary  waves 
referred  to  the height of reflection h, and no and ne are  the complex  indices of re- 
fraction  for  the  ordinary  and  extraordinary waves.  Then 

- Ro "- exp [ - - "p J h  (no - ne)dz 
Re 1 

and it follows  that 

If the  real and  imaginary  parts of equation (3) are  considered  separately,  then 

d 2w 
dh 

Equation (4) is the  relation  used  in  the  differential  absorption  experiments. For this  
equation, IAo/Ae I is supplied  by  experiment,  and IRe/Ro I is inferred  from  the  assumed 
reflection  mechanism  and the assumed  collision  frequency  profile.  The  result is a value 
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for  Im(no - ne) which, again with the  use of the  assumed  collision  frequency  profile, 
determines  an  electron  density  profile. 

A  similar  procedure  can  be followed with equation  (5).  The  phase of Ao/Ae can 
be  determined  by  experiment.  The  phase of Re/Ro is determined,  along with the  am- 
plitude,  by the assumed  reflection  mechanism.  The  result is a profile  for  the real part  
of (no - ne) as a function of height. 

From  the  real  and  imaginary  parts of (no - ne) we can, in  principle,  determine  both 
the  electron  density and  collision  frequency at height h. Some of the  practical  limita- 
tions  are  discussed  in  other  parts of this  report. 

The Reflection  Mechanism 

The  exact  nature of the  irregularities which give rise to  partial  reflections is un- 
known. They a r e  thought to  be  horizontally  stratified, with transverse  dimensions at 
least comparable  to the central  Fresnel  zone  (ref. 12), which is typically a few kilome- 
ters. The  irregularities  involve  significant  changes  in  electron  density  over  vertical 
distances of the  order of 100 meters  or  less  (ref.  13). The  collision  frequency is prob- 
ably  constant on th is  length  scale  (ref. 5). 

The  reflection  coefficients  can  be  calculated  by  using the Appleton-Hartree  equation 
for index of refraction 

n 2 
0, e = I -  

Equation (6) uses  the  standard notation (ref. 11). The  quantities Wo and We in  equa- 
tion (7) are  treated as constant  through  an  irregularity  since  they  depend only weakly on 
X when X << 1. (At an  electron  density of 10 per  cm3 and a frequency of 2.5 MHz, 
X = 0. 1. ) The  more  exact  magnetoionic  formula  from  reference 14 i s  often used  in 
place of equation (6). It can  also  be  written  in the same  form as equation (7), with 

wo, e 

4 

only weakly  dependent on X. 
The  irregularities  in index of refraction  are  therefore  given by 

4 
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Consequently, 

we 

wo 
"- (9) 

Equation (9) is used  in  conjunction  with  the Fresnel  reflection  formula  for  reflection 
coefficient  (assuming  vertical  incidence) 

or 

e M 
2 

n 

R O N  
z 

"""- - 
We 1 - n o  

Re 4ne wo 1 - ne 2 

If the  irregularity  has a transition  thiclmess as large as  100 meters  (which is about a 
wavelength  in a typical  experiment),  then  equation (10) is a poor  approximation. How- 
ever,  the  correction  factor wil l  be  a function only of wavelength,  and  since  both  modes 
have  about  the same wavelength,  equation (11) can  still  be  used.  This point is discussed 
further  in  references 1, 3, and 5, and it is examined critically  later in this  report. 

Equation (ll), of course,  specifies  the  phase  difference, as well as the  amplitude 
ratio of the  reflected  waves.  Since  they  both  depend on the  same  assumptions, one is 
about as well lmown as the  other  in a given  experimental  situation. 

Effect  of the  Medium  on  Amplitude  Ratio  and  Phase  Difference 

In order  to have a useful  diagnostic  technique,  both  the  phase  difference  produced  by 
propagation  in  the  medium  under test and its derivative with respect  to height  must be 
large enough to  measure.  The  phase  difference  for  electron  density  and  collision fre- 
quency  profiles  taken  from  reference 4 was calculated  for  this  report.  These  profiles 
are shown in  figure 1. The  frequency,  magnetic  field,  and  propagation  angle  used  in 
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Figure 1. - Electron  density  and  collision  frequency a s  func- 
tions of height. (From ref. 4. )  

these  calculations  are  identical  to  those  quoted  for  the  experiment which produced  the 
electron  density  profile (2. 54 MHz, 4 . 3 ~ 1 0 - ~  T,  and 40'). Complex  indexes of refrac- 
tion were  calculated  by  using  the  full  theory of Sen  and Wyller  (ref. 14). The  semicon- 
ductor  integrals in the  Sen-Wyller  theory  were  computed  by  using  the  approximations of 
Burke and Hara (ref. 15). 

clear  that  the  phase  difference as measured on the  ground  (curve  c) is comfortably 
large and  rapidly  varying  throughout  the  height  range shown. In addition, curves a 
and c  almost  coincide  above  about 80 kilometers.  The  phase  difference  imposed  by  the 
reflection  process  (phase of Re/Ro) could almost  be  ignored  in  this height  range. A 
phase-angle  measurement which was accurate within a few degrees would produce  an 
acceptable  measurement of Re(no - ne) throughout this height  range. With increasing 
height, the  measurement would become  progressively  more  accurate, and the  correction 
due  to  phase  change on reflection would become  progressively  less  important. 

Figure 2 shows  the  differential  phase  information  calculated  from  this  data. It is 

Another feature of the  differential  phase  method is shown in  figure 3. Values of 
1-1 = Re(no - ne)  and K = Im(no - ne) a r e  plotted for  three  different  collision-frequency 
profiles. In each  case,  the  electron  density  profile  used was the  one shown in figure 1. 
The  collision  frequency  profile  in  figure 1 was used  to  calculate  the  curves  marked  pa 
and Ka in  figure 3. For  the pb  and Kb curves, the collision-frequency  profile was 
multiplied  by 0 . 5 ,  and for  the  pc and Kc curves it was multiplied by 1.5 .  

6 



85 

80 

75 
.Ol 

c Phaseof A,/Ao 

. 1  1 10 100 
Phase angle,  rad 

Figure 2. - Differential phase information as a function of height. 
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Figure 3. - Differential refractive  index a s  a function of height. 

Despite  the wide variation  in  assumed  collision  profiles,  the  three  curves  for p 

differed only slightly  above 80 kilometers.  The  three  curves  for K differed  markedly 
throughout  the  height  range  in  question. It is easily shown through  the  Appleton-Hartree 
theory  that ,u is proportional  to X alone and K is proportional  to XZ when both X 
and Z are small.  Figures 2 and 3 together  illustrate a great  potential  advantage  for 
the  differential  phase  method  above 75 or 80 kilometers.  The  differential  absorption 
method requires  an  accurate  predetermination of collision  frequency.  This is necessary 
to  calculate the ratio I Re/Ro I and also  to  calculate a profile of Ne from a profile of 
Im(no - ne). Figures 2 and 3 indicate  that  the  differential  phase  method  can  get by with a 
rough estimate of collision  frequency. 
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Although these  remarks  do not apply below 75 kilometers,  there is still an important 
role  for the differential  phase  experiments.  Differential  phase  measurements could be 
used  to  accurately  measure  the  electron  density  for  heights greater than 75 or 80  kilome- 
ters. A  differential  absorption  measurement  could  then  be  used  to  improve  the  estimate 
of collision  frequency.  The  improved  collision-frequency  profile  could  then  be  extended 
downwards  by  using  the known dependence of collision  frequency on pressure  (ref. 16). 

In addition,  the  differential  phase  measurement  should b e  useful  to a somewhat 
higher  altitude  than  the  differential  absorption  measurement  in a given  experiment.  The 
accuracy of differential  absorption  experiments  often  deteriorates above  85 kilometers 
because  the  weak  extraordinary  mode  echo  from th is  level is contaminated  by  oblique 
echoes  from  lower  levels.  The  resultant  errors  in  the  extraordinary mode  amplitude 
and  phase, of course,  cause  errors in the  amplitude  and  phase of Ao/Ae. 

ferred  from  figure 4. In the  experiments  described  in  reference 4, the  electron  density 
was determined  from  the amount of change  in  amplitude  ratio in each  2.5-kilometer 
height  interval.  Curve  c of figure 4 shows  that  the  amplitude  ratio changed  by  about 

The  sensitivity of the  differential  absorption  experiment  to  these  errors  can  be  in- 
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b Ratio  of  reflection  coefficients. IR,/RoI 
c Ratio of reflection  coefficients,  IAe/Ao( 

d 
4 

Figure 4. - Dif ferent ia l   ampl i tude  as  funct ion of height. 

30 percent in a 2. 5-kilometer height interval  near 90 kilometers.  Thus, a spurious  sig- 
nal that caused  an  amplitude  error of the  order of 30 percent could destroy  the  desired 
information. 

A spurious  signal of the  same  amplitude would cause  a  phase  error of the  order of 
30 percent of a radian.  But  figure 2 shows that  the  differential  phase  shift  changes  by 
about 10 radians  in  the  same 2. 5-kilometer  height  interval.  The  differential  phase  shift 
is such a large  effect in this height range  that  spurious  signals would not cause  appreci- 
able  errors  until  their  amplitude  exceeded  that of the  desired  signal. Both methods 
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would then  fail. 
In the  lower  part of the  D  region,  the  addition of phase  difference  measurements 

will  at  least add a consistency  check on some of the  assumptions  made  in  the  experiment. 
In addition, as pointed out in  reference 8, they may  shed  some  light on the  nature of the 
irregularities.  There  are, t'nerefore, a number of compelling  reasons  for expending the 
effort  necessary  to add  phase  difference  measurements  to  differential  absorption  experi- 
ments on a routine  basis. 

VERTICAL SCALE OF REFLECTING LAYERS 

It is  generally  assumed  that the ratio of reflection  coefficients  does not depend on 
the vertical  scale of the  reflecting  layer  (refs. 5 and 12). The  justification is quite  rea- 
sonable and goes  somewhat as follows: For  each mode, the  reflection  coefficient will  be 
given  by  the  Fresnel  reflection  coefficient  multiplied  by  some  geometrical  factor  F(n, L). 
Here, L is the  thickness of the  layer in units of 2nc/o,  and  n is the  index of refrac- 
tion. For both  modes,  the  geometrical  factors  are  generated by  the  same  function, 
since  the  differential  equations  (the wave equations)  for  both  modes are  the  same.  The 
ratio of reflection  coefficients, as given  by equation (ll), is in e r ror  by the factor 

which approximately  equals unity, since no ne. The  argument fails only if F(n, L) is 
a rapidly  varying function of n. It will  be shown that D(no, ne, L) may  sometimes  differ 
appreciably  from  unity on this  account. 

The  argument is presented  in  appendix B that  the  most  reasonable way to represent 
a transition  in  electron  density is with an  Epstein  profile. A suitable  profile  for  gener- 
alizing a step  change  to one over a nonzero  distance is 

2 2 n (z) = n, + 
(ni - n;)e' 

where  u = Z/D, and nl and n2 are the  indices of refraction below  and  above  the transi- 
tion. This  profile is discussed in  appendix B, and its reflection  coefficient is given by 
equation  (B3), which is  repeated  here  for  convenience 
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n1 - n2 (-2icrknl)! 

n1 + n2 (2icrknl)! 
R =  

If nl and  n2 a r e  real, it can  be shown that 

2 R =  

We are  interested  in  cases  where n1 

sinh 2 [aak(nl - n2,3 

s i n h 2 p k ( n l  + n2,3 

and n2 are quite  close  to unity. The range of in- 
terest  of crk is from  zero  to about 2a. Since the change  in  electron  density is assumed 
to  be  small  compared  to  the  average value,  nl  and n2 can be replaced  by n, unless 
they  occur in the  combination nl - n2. A reasonable  approximation  to  equation (15) is 
then 

R =  f aak( A n) 
sinh( 2 m k n )  

where An = n1 - n2.  The  ratio of ordinary  mode  to  extraordinary  mode  reflection  coef- 
ficients is 

Ro  Ano sinh( 2rcrkne) 

Re  Ane sinh( 27r0kn0) 
-E- 

Since  the  right  side of equation (16) is assumed real, R is specified with  only a sign am- 
biguity.  The  sign wil l  be  the  same  for  both  modes, so there is no sign  ambiguity  in  equa- 
tion (17). The  correction  factor D is then  given  by 

si&( 27rcrkne) 

sinh( Zncrkno) 
a n o ,  ne, 4 

If L is defined  in a reasonable way (appendix B), 

0 = 0.228 L 
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Equations (15) to (18) a r e  deficient  in two related  respects.  They depend on the as- 
sumption that n1 and n2 are real.  They  also  contain no phase  information.  To  im- 
prove on this,  an  approximate  relation is obtained  directly  from  equation  (14).  The  in- 
dexes of refraction n1 and  n2 are replaced by n, except  where  they  occur as a factor 
(nl - n2).  The factorial  function [iok(nl - n,)]! can  be  replaced  by  unity as long as 
lok(nl - n2) I is  small  compared with unity. 

R E ! + -  An 2riok 
2 sin( 2 niokn) 

where p and K a r e  the real  and  imaginary  parts of n. 

no, e = Po, e + iK 
0, e 

It then follows  that 

sinh(2scrkpe)cos(2scrkKe) + i cosh(2rrakpe)sin(2~okKe) 
D(no, n , 5) = - e s i n h ( 2 r r c r k p O ) ~ ~ ~ ( 2 ~ ~ k K O )  + i  cosh(2sokpo)sin(2aokKo) (24) 

Equations (22) and  (24), of course,  degenerate into  equations (16) and (18) if KO and Ke 
a re   se t  equal  to  zero. 

To  estimate  the  size of this  effect, Ro, Re, and D(no, ne, cr) a r e  calculated by using 
equations (22) and  (24) and the  quasi-longitudinal  approximation  to  the  Appleton-Hartree 
equations.  The  calculations  were  made  for  experimental  data  taken  from  references 
3 and 4. The  data of reference  4  are shown in  figure 1, and  the data of reference 3 a r e  
shown  in figure 5. Calculations  were  made  for 1-, 5-, and  25-percent  increases  in 
electron  density.  The  characteristic  length cr was varied  from 10 to 50 meters  in 
steps of  10 meters.  These  ranges  are  consistent with parameters  attributed  to the ir- 
regularities by  other  authors  (refs. 12 and 13). 

There  was  an  additional  constraint  placed on the  irregularities  considered. An ir- 
regularity was considered  realistic if  it  produced a reasonable  reflection  coefficient. 
The  range of reflection  coefficients  observed by experimenters  varied  from 
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Figure 5. -Electron density  and collision fre- 
quency a s  functions of  height.  (From  ref. 3. ) 

(ref. 12) to  (ref. 13). We accordingly  limit  consideration  to  irregularities  such 
that  the  larger of  Ro and Re falls in  this  range. Under this  criterion,  irregularities 
with a transition  length o greater than 40 meters  never  produced a large enough re -  
flection  coefficient. And 40 meters  qualified  in only  one or two cases. 

The  magnitude of the  geometrical  factor D(no,  ne, a) is plotted  against height for a 
number of irregularities  in  figures 6 and 7. Figure 6 contains  the  results of calcula- 
tions  using  the  data of reference 3, and  figure 7 contains  the  results obtained  with  the 
data of reference 4. Figure 6 shows  that  the  maximum  probable e r ro r  in  the  amplitude 
ratio due to  this  effect was somewhere  between 5 and 10 percent  in  the  experiments of 
reference 3. The  experiments of reference 4 were performed up to  much  higher  elec- 
tron  densities  and  were  hence  more  susceptible  to  this  particular  error.  Figure 7 shows 
that  the  expected e r r o r s  in  their  amplitude  ratios  range  up  to  about 30 percent. 

In both of the  above  referenced  experiments,  other e r ro r s  were present as large as 
those w e  are discussing.  These  other  errors were due  to  such  things a s  oblique  reflec- 
tions and inadequate  isolation between channels.  They could presumably  be  reduced by 
better experimental  apparatus.  The  errors  discussed  here are more  fundamental  in 
nature and stem  from  inadequate knowledge of the  geometry of the  reflection-producing 
irregularities.  This  geometry varies randomly  in both time and space. W e  believe  this 
limits  the  potential  accuracy of the  differential  absorption  measurements  to  about  their 
present capability. 

In both cases  discussed above, the  phase of D(no, ne, a) was calculated, as well as 
the  amplitude. A plot was considered  unnecessary,  however,  since  for  cases of inter- 
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est, the  phase  angle  never  exceeded lo. Apparently, then, this  type of uncertainty 
about  the  reflecting  layer will  not be a factor in  differential  phase  measurements.  This 
latter  result  probably  justifies  discarding equation (24) in  favor of the simpler  equa- 
tion (18) in  qualitative  discussions of this effect. In fact,  equation (18) can be  simplified 
even  further.  Unless a is very  small  (less than  approximately X/4r ), equation (18) 
is adequately  approximated  by 

2 

Equation (25) can  be  used  to  estimate  an effect of increased  operating  frequency. 
The  collision-free  quasi-longitudinal  approximation  to  the  Appleton-Hartree  equations 
wi l l  suffice  for po and pe. 

and 

N xyL 

1 - YL 
Po - Pe 

2 
N xyL 

1 - YL 
Po - Pe 

2 
(27) 
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which behaves  approximately as u - ~ .  Thus,  the  exponent 27r0k(pe - po) behaves  ap- 
proximately as u-2 for a given  irregularity  and would rapidly  approach  zero with in- 
creasing w .  

Increased  operating  frequency, of course, is desirable  for  other  reasons. One of 
the  most  important  sources of e r ro r  in  partial  reflection  experiments  is  oblique  echoes. 
For a given  antenna  size,  increased  operating  frequency  allows a more  collimated  beam. 
Increased  operating  frequency,  however,  results  in  much  weaker  echoes.  The  reason 
is  easily  seen  from  equation (16). If cr i s  not too small  (ay X/47r ), equation (16) can 
be  approximated by 

2 

IRI - 2rak Ane -27rcrh 

which behaves  approximately as o Thus, I R I decreases  exponentially with 
increasing o. We expect,  however,  that a substantial  decrease  in echo  strength  can  be 
tolerated.  Thompson  scatter  measurements are routinely  performed  using  echoes  that 
a r e  many orders of magnitude  weaker  than  present  partial  reflection  returns.  The 
Thompson  scatter  echo  return  strength  from  the E region i s  equivalent  to a voltage re-  
flection  coefficient of about The  major  cost  is  in  time  resolution,  since  it is 
necessary  to  integrate  the  signal  over  many  pulses.  The  same  techniques should be 
adaptable  to  partial  reflection  measurements. 

MODE  COUPLING ON REFLECTION 

In some  partial  reflection  experiments, only one magnetoionic  mode is  transmitted 
at a time.  The  ordinary and extraordinary  waves  are  transmitted on alternate  pulses 
(ref. 8). In other  experiments, both modes  are  transmitted  simultaneously,  in  the  form 
of a linearly  polarized wave (ref. 5). The  reflected  energy  is  separated into  ordinary 
and extraordinary  mode  components  by  the  receiving  equipment used. 

In simultaneous  measurements,  experimenters  take  great  pains  to  minimize  cou- 
pling between  channels,  since  this i s  a potential  source of error,  particularly when one 
signal is much stronger than the  other.  The coupling between  modes  that  may  occur in 
the  reflection  process  is  usually not discussed. 

If the  irregularities  are  treated as plane  discontinuities,  the  problem  can  be  formu- 
lated  simply  by  matching  electric  and  magnetic  fields  across the interface  (see  appen- 
dix C and  ref. 17). The  resulting  matrix equation can  be  solved  numerically  (ref. 17) or 
by the  perturbation  technique  developed in  appendix C. 

We prefer,  however, to avoid assuming  that  the  irregularities  are  plane  disconti- 
nuities. It is more  likely  that  the  changes in electron  density  take  place  over a signifi- 
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cant  fraction of a wavelength. An adequate  theory is available  in  the  first-order coupled 
equations first given  by  Clemmow  and Heading (ref. 18) and discussed by  Budden 
(ref. 11). In the  case of vertical  incidence,  the  four  coupled  equations a r e  given  in  ref- 
erence 11. 

+ 

(no + "e) 
? 

"e fi - inef4 = - - 
2 f 2 - -  2ine f3 

In equations (29) to (32), Q is a coupling parameter given by 

(33) 
' 2  2 

P o - 1  P e - 1  

The  subscripts "0" and iretr refer to  ordinary and extraordinary waves,  respectively. 
A prime  denotes  (l/k)(d/dz)  (the  calculation is performed in a coordinate  system with 
length  unit X/27r). Here k and h denote  the free  space wave number and  wavelength. 
The  polarizations  for  the two modes  are po and pe. It  can  be shown from  the  form of 
equations (29) to  (32) that f l  and f2  a r e  potentials  for  the upgoing  and downgoing or-  
dinary  waves. In addition, f 3  and f 4  are potentials  for  the upgoing  and downgoing ex- 
traordinary  waves. Note that all terms on the  right  sides of equations (29) to (32),  the 
coupling terms,  contain  spatial  derivatives  and would vanish  in a homogeneous  medium. 

The  fields are related  to  the  potentials by 
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where Z, is  the  characteristic  impedance of free  space.  Consider a situation  where 
there is an  ordinary wave incident  from below. The upgoing ordinary  electric  field  is 
then 

The  reflected (i. e . ,  downgoing ordinary)  electric  field  is 

The downgoing extraordinary  electric  field  is 

If the  reflection  coefficients  are defined in  terms of the x  component of electric field, 
they a r e  given  by 

- '2 
Roo - - = - 

Eiox f~ 

- - Roe - - - 
E iox 

(43) 
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For  our  purposes,  the  irregularities  can be considered as small  perturbations  in  n 
0, e 

equations (29) to (32). Let  the  zero-order  upward-propagating  ordinary wave be given 
and Po, e' We can,  therefore,  use a Born  approximation  approach  to the solutions of 

by 

and let all other  zero-order  waves  be  zero.  Then  the  first-order  equations  for  the 
downward-propagating  ordinary  and  extraordinary  waves are 

and 

Equations (45) and (46) can  be  solved  by  elementary  methods  to  yield  the  first-order 
equations 

J, 2ino 

and 

(no - ne) -i(no+n )z 
e e l  

dz 1 

Since we are only interested  in  the first Born  approximation, we will henceforth  drop  the 
superscript (1). We wil l  set z = 0 at the lower edge of the irregularity and refer  our 
reflection  coefficients  to  this point. With these  adjustments,  equations (47) and  (48) be- 
come 
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f2=-[ 

and 

- n' 2in0 dz 1 

V 
1 (no - ne)  Po -i(no+n )z 

e e l  
dzl 

(49) 

Equation  (33) has  been  used  to  eliminate +. Now n  and  p  contain  the  irregu- 
larity as a small  perturbation. But n' and p' are first order in the  irregularity. 
It is consistent with th i s  first-order  approximation  to  use  the  unperturbed  (zero  order) 
values  for  n  and po, e. 

0, e 
Thus, 

0, e 0, e 
0, e 0, e 

00 -2inoz 
dz 

and 

Reflection From a Plane Discontinuity 

The  plane  discontinuity i s  the  limiting  case of a transition that takes  place  in a dis- 
tance  small  compared  to a wavelength (say 6). The  integrals are easily  evaluated  for 
this  special  case. Then, 
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Similarly, 

-i(no+ne)z 
dz E Ap 0 

Thus, 

and 

- AnO 

2n0 

Roo - - - 

(54) 

We have  used  equations  (42)  to (44) and  the  fact that pope = 1. Both results  agree with 
the  first-order  results of appendix C.  

Reflect ion  From  Finite  Electron  Density  Irregulari ty 

For th is  case, 

n’ = - X’ 
O ax 

‘ -  X’ Po” ax 

(59) 



where ano/aX and ap0/aX are considered  zero  order. By using  equations (51),  (52), 
(59), and (60),  we  can  write 

and 

The  reflection  coefficients defined  in terms of the x component of electric  field  will  be 

1 
Roo - Io0 

and 

We defined our  reflection  coefficients  this way in  appendix C to  compare  our  results with 
those of reference 17. It is  more  reasonable, however, to  present  results  in  terms of 
the  magnitude of the  electric  fields  rather  than  their  x component.  Accordingly, we 
define  gab as the  magnitude of the  electric  field of the  reflected  b  mode  divided by 
the  magnitude of the  electric  field of the  incident a wave. This definition assumes  that 
both fields  are  measured at the  same point and  that only one  incident wave is  present. 
It is  easily shown that 

woo = b o 0 l  = an, Io, 
2n0 ax 

and 
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A similar  analysis  can  be  performed by  assuming  an  incident  extraordinary wave. The 
resul ts   are  

1 ane 
ee 2ne ax 
g y" 'e e 

and 

The  shape of the  irregularity  enters only through  the  integrals Ioo, etc.  Since no = ne, 
however, all of these  integrals  have  about  the  same  value.  The  ratio of any two reflec- 
tion  coefficients is therefore  almost independent of irregularity  thickness  and  form. 
This is analogous  to  assuming that the  correction  factor D(no, ne, a) discussed  earlier 
is equal  to unity. We found e r r o r s  up to 30 percent in this latter assumption. Such 
e r r o r s  would be  quite  tolerable,  however,  in  the  present  application  where we merely 
attempt  to  determine  whether e r r o r s  due  to cross  reflection  are likely  to be  appreciable 
in a given  experiment.  The two ratios of interest   are 

and 

Equation (69) gives the ratio of reflected o wave electric  fields  produced  by  equal- 
amplitude  incident  e and o waves. It is thus a measure of the  degree  to which the 
reflected o wave is contaminated  by  energy coupled in  from  the  incident  e wave. 
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Equation (70) similarly  gives a measure of reflected  e wave  contamination by  coupling 
to  the  incident o wave. Since equations (69) and (70) do not depend on the  shape of the 
reflecting  layer, the magnitude of the coupling effect  can  be  estimated without any knowl- 
edge of the  layer. 

Figures 8 to 10 show sample  calculations  performed  by  using  equations (69) and (70). 
The  wave  frequency was taken as 2.5 megahertz  and  the  collision  frequency as 10 per 
second which i s  a reasonable  value  for  the  90-kilometer  altitude.  Because of the factor 
(no - ne) in  equations  (69)  and (70), the coupling ratios would be  appreciable only in  the 
upper  part of the range of electron  densities of interest. In our  sample  calculations,  the 
range  chosen was  from 2000 to 10 000 per  cubic  centimeters. 

electron  density of 10 per  cubic  centimeter  and a magnetic  field of ~ x I O - ~  tesla 
(0 .  5  gauss). In figures  9 and 10, the ratios Coe and Ceo, respectively,  are plotted 
against  electron  density  for  three  representative  magnetic  field  orientations.  The  three 
cases   a re  (1) magnetic  field  strength (€3) of 0 . 3 5 ~ 1 0 - ~   t e s l a  and  propagation  angle (q) of 
75'; (2) magnetic  field  strength of 0 . 5 ~ 1 0 - ~  tesla  and  propagation  angle of 45'; and 

5 

Figure  9  shows  both coupling ratios plotted as functions of propagation  angle  for  an 
4 

0 20 40 60 80 100 
Propagation  angle, 0, deg 

Figure 8. -Coup l ing   ra t io   as  a func t i on   o f  
propagation  angle. Wave frequency,  2.5 
megahertz;  magnetic  field, 5x105 tesla; 
electron  density. 1 0 4  per  cubic  centimeter; 
col l is ion  frequency, IO5 per  second. 
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F igu re  9. - C o u p l i n g  ratio, Coe, as a func t i on  
of  electron  density. Wave frequency, 2.5 
megahertz;  col l is ion  frequency, 105 p e r  
second. 
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Electron  density  per  cm3 

Figure 10. -Coupl ing  ra t io ,  C,,, as a f u n c -  
tion of electron  density. Wave frequency, 
2.5 megahertz;  coll ision  frequency, IO5 
pe r  second. 

(3) magnetic  field  strength of 0 . 6 5 ~ 1 0 - ~  tesla and  propagation  angle of  15'. These  are 
chosen  to  represent  near-equatorial,  mid, and near-polar  latitude,  respectively.  The 
calculated coupling ratios  range  up  to  about 1 percent  for Coe and 3 percent for  Ceo. 
It should be noted that,  due  to  differential  absorption,  the  incident  ordinary wave  could 
be  an  order of magnitude stronger than  the  incident  extraordinary wave at  the 
90-kilometer  level.  The  effect of o-e coupling would be  greatly augmented  by this 
disparity in incident wave amplitude.  This  difference in  incident  wave  amplitude would, 
of course,  reduce  the  influence of mode coupling on the  reflected  ordinary wave. 

The  coupling ratios Coe and  Ceo  have  been found to  be in the 1 to 3 percent  range 

a t  an  electron  density of 10 per  cubic  centimeter.  Because  there  can  be a large  dispar- 
ity  in  incident  amplitude,  the  spurious  part of the  reflected  e wave might  approach 
about 10 percent.  This is not large enough to  be  important  at the  present  state of the 
art.  Partial  reflection  experiments  are  usually not performed  above  electron  densities 
of about 2000 per cubic  centimeter, and when they are,  the  higher  altitude  part of the 
data is taken with reservations  (ref. 17).  However, appreciable  improvement in current 
experimental  capability would probably  make  mode-coupling errors   large enough that 
they  should be  taken  into  account. 

4 

23 



REMARKS  ON THE  EFFECTS OF TURBULENCE 

Our  analysis of the  reflection  process  have  been  one  dimensional  under  the  assump- 
tion that the  reflections are  from  horizontally  stratified  layers with transverse  dimen- 
sions at least comparable  to  the  central  Fresnel zone.  The  radius r of the central 
Fresnel zone is approximately 

where h is the  height of the  irregularity, and h is the  wavelength of the  radiation. In 
these  experiments, r is typically  about 2 kilometers.  The  vertical  scale of the  irregu- 
larities  must  be much less, however, to  produce  the  measured  reflection  coefficients. 

At the  opposite  extreme, so to  speak,  one  could view the irregularities as a sea of 
homogeneous  turbulence  filling  the  entire  region of interest.  The  reflections  from  such 
irregularities  can  be  discussed by  using  the  Born  approximation  solutions of the wave 
equation  and  the statistical  approach  given in reference 19. The  strength of the  reflec- 
tions would depend on the  power  spectrum of the  irregularities (i. e. , the  Fourier  trans- 
form of the electron  density  spatial  autocorrelation  function).  The  reflection  strength 
for  backscatter would be  proportional  to  the  Fourier  component at 2ci, where ci is the 
incident wave propagation  vector.  Belrose and Burke (ref. 3) showed that, on the  sim- 
plest  level,  the  differential  absorption  method would work  just as well  even if this  latter 
description of the  irregularities  were  more  correct. Flood (refs. 20 and 21) calculated 
a correction  to  this  description  explicitly  taking  into  account  differential  absorption 
within the  scattering volume.  Flood also  argued  in  favor of the "volume scattering" 
description of the  irregularities. In reference 10, von Biel, Flood, and Camnitz,  also 
argued  the  case  for  the "volume  scattering"  description,  claiming  that  their  experimen- 
tal data  ruled out the  alternative.  Conclusions  drawn  from  the  data of reference 10, 
however,  should be  considered  tentative,  since  the  data  were  reduced by using a ques- 
tionable  assumption. As mentioned earlier  the  data  reduction  theory of reference 10 
assumed  the  validity of the  quasi-longitudinal  approximation.  The  experiments, how- 
ever,  were  performed  at a place  in  Brazil  where  the  magnetic  dip  angle is about 30'. 
At a 60' propagation  angle,  the  quasi-longitudinal  approximation is somewhat  doubtful 
at 2.4 megahertz,  the  frequency at which the  experiments  were  performed. 

Belrose  (ref. 8) takes  the view that  the  process of reflection is probably  not  uniquely 
quasi-stratified  or  turbulent  but is a combination of the two. If the  irregularities  are  due 
to  turbulent  mixing of the  existing  electron  density  gradient,  such a view is easy  to  jus- 
tify.  Bolgiano  (ref. 22) discussed  turbulent  processes  that  might  produce highly aniso- 
tropic  irregularities with the  characteristic  vertical  dimension  much  smaller  than  the 
horizontal.  The  transition  length could be as small as the Kolmogoroff inner  scale of 
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turbulence.  This would be about 10 meters  at the  100-kilometer  altitude  and would de- 
crease with decreasing  altitude.  The  irregularities would have  horizontal  structure on 
length  scales up to  that of the  energy  containing  eddies.  This  might  be  tens of kilome- 
ters. The quasi-stratified view of the  irregularities then i s  probably a reasonable 
starting point. Even with this  simplified view, we have shown that  significant e r r o r s  
may  arise  through  ignorance of the irregularities.  Other  significant  problems would 
emerge in a study which incorporated  the  effects of turbulence  in a realistic way. 

One such  problem is connected with the  pulsed  nature of the  transmissions. An im- 
portant  assumption  in  the  partial  reflection  experiments is that, at a given  time,  both 
modes  are  reflected  from  the  same  height o r  range of heights.  This  need not be  ex- 
actly  true,  since  the  group  velocities  for  the two modes are different.  The  ordinary 
wave pulse will  always  lead  the  extraordinary wave pulse  by a small distance,  the "non- 
overlap  distance, '' Ah. It is easily shown  that Ah is given  approximately  by 

where p is the group  refractive index (c divided  by the  group  velocity) 
g 

Figure 11 shows Ah as a function of height as computed from  equation (72) by using  the 
ionosphere of figure 1 and a frequency of 2. 54 megahertz. Since a pulse length in  partial 
reflection  experiments  is  usually of the order of 5 kilometers, Ah is small  compared to 
a pulse length at any level. 

Whether  the  nonoverlap is a problem  seems  to depend on the  mean  vertical  spacing 
of the  reflecting  irregularities. If the  mean  spacing of reflectors  is  large c.ompared  to 
the  nonoverlap  distance,  then  most of the  time the ordinary and extraordinary  mode 
pulses will  illuminate  the  same  reflectors. In particular, if the  mean s I acing is of the 
order of a pulse  length,  then  the  nonoverlap  distance  must  approach a p  lse  length  before 
we encounter  difficulties on this  score.  For  the  conditions  considered i 3 figure 11, this 
clearly  does not happen at any  altitude of interest. 

In the case of homogeneous  turbulence,  one c m  show (ref. 19) that  the  scattering 
comes  primarily  from the spatial  Fourier component of the  turbulence  whose  length 
scale is one-half of a wavelength. For  this  case,  therefore, it is conceivable  that  our 
results might be  modified when the  nonoverlap  distance is as small as one-half wave- 
length. For  the  conditions of figure 11, this  occurs at a height of about 85 kilometers. 
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Figure 11. - Pulse  nonoverlap  distance as a function of height 
for a frequency of 2.54 megahertz  and  the  ionosphere of fig- 
ure 1. 

This is, however, a very  conservative  estimate of when the  nonoverlap is a problem, 
and further work  should be done to  analyze  partial  reflections  from a turbulent  region. 

CONCLUDING REMARKS 

We have  discussed  the  addition of phase  difference  measurements to partial  reflec- 
tion  experiments  and  some  advantages in this method of measuring  electron  density 
were pointed out. In particular,  the  determination of electron  density  through  phase 
difference  measurements is much less  sensit ive  to  errors in the  assumed  collision  fre- 
quency  profile.  Moreover,  both  electron  density  and  collision  frequency  can  be  deter- 
mined  through  measurements of differential  absorption  and  phase  shift. 

In partial  reflection  experiments,  the  reflections  are  usually  treated as simple 
Fresnel  reflections  from a plane  interface. We have  argued  that  the  most  reasonable 
one-dimensional  model  for  the  irregularities is an  Epstein  profile. We have shown that 
the  ratio of reflection  coefficients, as calculated  for  this  type of profile,  sometimes 
differs  appreciably  from  the  result  given  by  Fresnel  reflection. At a given  operating 
frequency, e r r o r s  due to  this  effect would increase with height (or  electron  density). 
The  errors would, however, diminish  rapidly with increased  operating  frequency. 

We have also  studied  the  effect of mode  coupling  in  the  reflection  process.  Calcu- 
lations were made  for a plane  discontinuity and for a general  one-dimensional  model of 
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the  reflecting  layer. In  both cases,  mode coupling was found to  be a fairly  small  effect. 
Its  importance  also  increased with electron  density,  however,  and  our  calculations in- 
dicate  appreciable  potential  errors  due  to  this effect in partial reflection  measurements 
where  the  electron  density is greater than or  equal  to 10 per cubic  centimeter. It is 
easily shown that this effect also  diminishes with increased  operating  frequency. In 
addition, the effect of mode  coupling  can  be  avoided  by  transmitting  the two modes on al- 
ternate  pulses. 

4 

The  prevalent ideas on the  nature of the reflecting  irregularities were also dis- 
cussed  in  the  context of modern ideas on atmospheric  turbulence.  The  quasi-stratified 
view of the  irregularities w a s  shown to  be  consistent with these ideas. The  effect of 
differential  group  delay on partial  reflection  experiments was  considered.  It was found 
to be small  compared  to  pulse width in a typical  experimental  situation. It is not con- 
sidered  an  important  source of e r ro r  if the reflections are from a few discrete  irregu- 
larities. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, January 17, 1972, 
112-02. 
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APPENDIX A 

SYMBOLS 

Ae extraordinary wave reflection  coefficient  referred  to  ground 

ordinary wave reflection  coefficient  referred  to  ground 

a constant  in eq. (B7) 

a' 
Y 

C 

unit  vector  in  x  direction 

unit  vector  in  y  direction 

velocity of light in free  space (3x10 m/sec) 8 

c1, c2, c3  constants  in eq. (Bl) 
D(no, ne, L) geometrical  ratio defined by eq.  (12) 

D(no, ne, u) geometrical  ratio  for  Epstein  profile 

d  length of linear  transition (fig. 12) 

EX 

EY 

electric  field  (x component) 

electric  field  (y component) 
4 

Eiox x component of Eio 

Erex 

Erox 

E io 

E r e  

Fbe, L) geometrical  factor  in  extraordinary wave reflection  coefficient 

Fb0, L) geometrical  factor  in  ordinary wave reflection  coefficient 

f l  

x component of Ere 

x component of Ero 

incident  ordinary  electric  field 

reflected  extraordinary  electric  field 

reflected  ordinary  electric  field 

- 
- 
- 

potential for upgoing ordinary wave 

f2  

f3 

potential  for downgoing ordinary wave 

potential  for upgoing extraordinary 

f4 
h height of reflection 

Ioe 

potential for downgoing extraordinary 

integral  defined by eq. (62) 
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Io0 
K 

Ke 

KO 

k 

Ei 
L 

[MI 

m 

N 

n 

Pe 

PO 
q 

R 

integral  defined  by eq. (61) 

imaginary  part of (no - ne) 

imaginary  part of ne 

imaginary  part of no 

free space wave number 

incident wave propagation  vector 

characteristic length  (fig. 12) 

coefficient  matrix  defined  by  eqs. (C9)  and (C10) 

exponent in eq. (B7) 

electron  density  per  cubic  centimeter 

complex  index of refraction 

index of refraction below transition 

index of refraction  above  transition 

index of refraction of '?arr wave in  lower  region 

index of refraction of "a" wave in  upper  region 

index of refraction of "b" wave in  lower  region 

index of refraction of "b" wave in  upper  region 

index of refraction of extraordinary wave 

index of refraction of ordinary wave 

column  vector  defined  by  eqs. (C9)  and (C10) 

polarization (E /E ) of "arr wave in  lower  region 

polarization of '*a" wave in  upper  region 

Y X  

polarization of "b" wave in  lower  region 

polarization of "b" wave in  upper  region 

extraordinary wave polarization 

ordinary wave polarization 

parameter defined by eq. (B9) 

reflection  coefficient 
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[RI 
r 

Raa 

Rab 

Re 

RO 

Roo 

Roe 

Taa 

Tab 

TD 
U 

W 

wO 

we 

wO 

X 

X 

Y 

yL 

yT 

Y 

Z 

z 

E 

€0 
x 
IJ. 

IJ.0 

IJ.e 

column vector  defined  by  eqs. (C9)  and (C10) 

radius of central  Fresnel zone 

direct  reflection  coefficient  for E, 

cross  reflection  coefficient  for E, incident Tfaff  wave, reflected "b" wave 

extraordinary wave reflection  coefficient  referred  to  height of reflection 

ordinary wave reflection  coefficient  referred  to  height of reflection 

ordinary wave direct  reflection 

cross  reflection  coefficient,  incident r T ~ "  wave, reflected "e" wave 

transmission  coefficient  for wave 

cross  transmission  coefficient,  incident ((aTt wave, transmitted "b" wave 

wave transit  time defined  by eq. (B22) 

normalized  Cartesian  coordinate (Z/u) 

parameter  defined  by eq.  (B8) 

W for Z = 0 

parameter  defined  for  extraordinary wave by  eqs. (6) and (7) 

parameter  defined  for  ordinary wave  by eqs. (6) and (7) 

parameter  proportional  to  electron  density 

Cartesian  coordinate 

normalized  gyrofrequency (wb/w) 

Y cos (0 

Y sin q 

Cartesian  coordinate 

normalized  collision  frequency ( ~ / w )  

Cartesian  coordinate 

electric  permittivity 

electric  permittivity of free  space 

free  space wave  length 

real  part of (no - ne) 

magnetic  permeability of free  space 

real  part of ne 
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P 

pd 

PO 
u 

7 

Ob 

P w 

real part of no 

electron  collision  frequency 

parameter  defined  by  eq. (B10) 

parameter  defined  by  eq. (B19) 

parameter  defined  by  eq. (B18) 

characteristic length of Epstein  profile 

pulse  length, sec  

propagation angle relative  to  magnetic  field 

coupling  parameter  defined by eq. (33) 

angular  frequency 

electron  gyrofrequency 

plasma  frequency 
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APPENDIX B 

THE  REFLECTION OF ELECTROMAGNETIC WAVES  FROM A GRADIENT 

OF REFRACTIVE  INDEX 

The  reflection  coefficient of a transition  between two different  regions of constant 
refractive index has long been of interest  (ref. 23). Solutions  can  be  obtained  for  many 
different  transition  shapes.  These  transition  shapes  may  be  grouped into  two general 
classes. One class  comprises the smooth  profiles. For this  class,  the index of refrac- 
tion  in  the  region of interest is specified by a single  analytic  function which is  asymp- 
totic  to  the  desired  constant end values.  This  class  includes,  but i s  not limited to, the 
so-called  Epstein  profiles  (refs. 11 and 24). 

The  other  class of transitions  comprises  the  discontinuous  profiles.  They  include 
all those  that  have a well-defined  beginning  and end. The  index of refraction is described 
by specified  constants  outside  the  transition  region.  Inside  the  transition  region, it i s  
described by some  function which is matched  to  the  constant  regions at the  boundaries. 
The first  derivative,  however, or some  higher  order  derivative is discontinuous at the 
boundaries. In this  appendix, the  solutions  for  both  types of profiles  are  discussed, 
and it is shown that there  are  important  differences.  The  reflection  coefficients  for 
discontinuous  profiles  have  an  oscillatory  behavior as a function of wavelength. This  is  
not present in the  results  for  Epstein  profiles.  The  reflection  coefficients  for  discon- 
tinuous  profiles  are  also  very  much  larger in  the short wavelength  limit. We argue  that 
the  smooth  profiles are  most  reasonable  descriptions of a transition  in  electron  den- 
sity. 

Epstein Profiles 

A family of curves  able  to  simulate a wide variety of electron  density  contours  are 
the  Epstein  profiles (refs. 11 and 24). They are  described  by  the  relation  (ref. 11) 

n (2) = c1 + 2 eu [(cz - cl)(eu + 1) + c 
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(eu + 1)2 
where n is the index of refraction. Also, 
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where (T is a characteristic length. For these  profiles,  the wave equation  can  be  trans- 
formed  into  the  hypergeometric  equation  and  exact  solutions  can  be obtained. 

We are  interested  in a continuous  monotonic  transition  from  index of refraction  nl 
to index of refraction n2. This is simulated  by  using c1 = nl, c2 = n2, and c3 = 0. An 2 2 

Position 

Figure 12. - Normalized  dielectr ic  constant  as a funct ion  o f   pos i t ion 
for   l inear  prof i le  and  Epstein  prof i le  wi th  parameters c nt, 
c 2  = n;, and  c3  = 0. Length L is  distance  for (n; - "1) ; r =  to change 
from  10  percent to 90 percent  of  its  f inal  value;  length of l i nea r  
prof i le d is  equal  to 1.25L; characterist ic  length  of  Epstein  pro- 
f i le (5 is equal to 0. 228L. 

Epstein  profile of this type is shown in  figure 12. The electric  field  reflection coeffi- 
cient  for this case is given  in  reference 11 as 

where k = o/c  is the free space wave number. If n1 and n2  are  real,  the  magnitude 
of R may  be  expressed  in a fairly  simple  form 

[krk(nl - n 2 ) ] r  
IRI = 

sinh [ruk(nl + nz,) 
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In obtaining  equation (B4), the following relation was used: 

x! (-x)! = - ITX 

sin m 

If the  transition is very  abrupt  (ak << l), then  equation (B4) reduces  to  the  simple Fres- 
nel  reflection  formula 

R2 = r  nl + - n n:7 
However, the  reflection  coefficient  in  equation (B4) drops off monotonically  and very 
rapidly as crk is increased. 

Discontinuous  Profi les 

A number of earlier  investigators have  calculated  reflection  Coefficients  for  Pro- 
files with discontinuities  in  the  gradient of dielectric  constant. In many  cases,  these 
profiles are considered as approximations  to a plasma  boundary,  that is, the  lower 
edge of the  ionosphere or a shock  front  (refs. 25 to 27). The  discontinuity  in  gradient 
is usually  considered as an  unphysical  but  minor  feature of the  profile;  one that should 
not appreciably  effect  the  result. 

Other  authors  have  noticed  that,  in  cases  where  the  transition  region is long com- 
pared  to a wavelength, the  discontinuity  has a profound effect on the  result. Schelkunoff 
(ref. 28) showed that the  reflection  coefficients of finite  transitions are strongly  depend- 
ent on the  behavior of the  impedance  function at the  boundaries. If the  impedance  func- 
tion I and its first m  derivatives  are continuous at the  boundaries of the  layer but  the 
(m + 1) derivative is not, then  for a sufficiently  small wavelength, the  reflection  coeffi- 
cient  varies as (X/d)mfl, where X is the  normal wavelength  and d is the  length of the 
transition  region.  This is true  regardless of the  precise  functional  form of I. Schel- 
kunoff (ref. 28) also pointed out that  Epstein  profiles  have a fundamentally  different  be- 
havior in this range and warned  against  applying  them  to  practical  problems. Schelkunoff 
asserted  that  the  difference was due  primarily  to the effect, on the  reflected wave, of 
the  semi-infinite  regions,  where  the  Epstein  profile only approximates a constant. While 
this  may  be  true, Schelkunoff's  point of view ignores  an even more  unrealistic  feature of 
the  discontinuous  profiles. 

To illustrate th i s  point, we  consider a very old problem  (ref. 23). We alter the ap- 

34 



proach  slightly  to  obtain  results  in a form which best illustrates  our point. Consider a 
transition  in  refractive  index of the  form 

n2 = { + az)m for O < z < d  

+ ad)m = n2 for z > d 

A family of these  profiles is shown in  figure 13. The  function (1 + az)" is plotted 
against z for  various  values of m. In each  case, the constant a is chosen to  bring 

z- 

Figure 13. - Function H = I1 + azIm for various  values 
of rn. In each case, a i s  chosen to take the  curve 
through the same end points. 

the  curve  through the same end points.  The  shape of the  curve is surprisingly  insensi- 
tive  to  the  value of the exponent m.  These  profiles a r e  continuous at z = 0 and z = d, 
but  the first derivative is not. We assume  normal  incidence  and  time  dependence  eiot. 
We also  make  the following definitions  (still  more or  less following ref. 23): 
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q=”-  m + l  
m + 2  

By using  these  definitions,  the wave equation  in  the  transition  region  can  be  transformed 
to  Bessel’s  equation.  The  solutions are matched  to a transmitted wave on the  right  side 
and  an  incident  plus  reflected wave on the left side.  The  result  for the  reflection  coeffi- 
cient is 

p1Q2 - P2Q1 R =  
p2Q3 - ’lQ4 

where 

If the transition  region is long compared  to a wavelength,  then  both po and pd a r e  
large  compared  to unity, and we can  use  asymptotic  approximations  to  the Hankel func- 
tions. If we use only the first term in each  asymptotic  series, we obtain  the not too sur-  
prising  result 
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I 

We therefore  retain two te rms  in the  asymptotic  expansion of each Hankel function. 
In the  numerator  and  denominator of equation (B11) we retain  terms  up  to first order  in 
l/po  and 1/pd. The  result is 

-iwTD 
- "- 1" 

am 8  ki ( 1; el + ad) 

We have put in  the  definitions of q, po, and pd, and  TD is the  round trip  transit  time 
of a wave traveling  across  the  transition  region at the  local  phase  velocity 

In this  calculation,  R  is  referred  to  the point z = 0. 
Now in  equation (B21) there is a term with no time  delay and one  with  time  delay  TD. 

Thus,  the  reflected wave comes  entirely  from  the  points z = 0 and z = d. It is  easily 
shown, moreover,  that  the  amplitudes of the two reflections are proportional  to  the  dis- 
continuities in the  slope of the  impedance function ( d G ) .  If w e  carried  our  analysis 
to  a higher  order  in  l/po  and 1/pd, we would merely add in the  effect of multiple re- 
flections.  There would be a term with time  delay 2TD, one with 3TD,  and so on. The 
reflections,  in  this  case,  clearly  do not come  from  the  transition  region at all but  from 
the two discontinuities. 

The  quantitative  difference  between  the  Epstein  profiles  and  the  discontinuous  pro- 
files can  be  seen by  considering a sample calculation.  Let L denote  the  distance r e -  
quired  for a profile in dielectric  constant  to  change  from  its  initial  value  plus 10 percent 
to its initial  value  plus 90 percent of the  total  change,  and  choose  an  Epstein  profile  and 
a linear  profile with the  same L (fig. 12). A simple  calculation  shows  that 

d = 1.25 L 0323) 

(T = 0.228 L 0324) 

Reflection  coefficients were calculated  for a transition  from  n = 1.0  to  n = 1. 1 by 
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using  equations (B4) ,   (Bl l ) ,  and (B21). The  transition  length L was  varied  from 0 to 
3 . 0  free  space wavelengths.  The  results  are shown in  figure 14. The  solid  curve is for 
the  Epstein  profile,  and  the  dashed  curve is for  the  linear  profile shown in figure 12. 
The  dotted  extension of the  dashed  curve  shows  the  approximate  result  (eq. (B21)), where 
it differs  appreciably  from  the  exact  result (eq. ( B l l ) ) .  . 

There are two interesting  differences  between  the two curves of figure 14: 
(1) The  oscillatory  character of the  dashed  curve  denotes  the  interference  effects  due 

to  reflections  from  the two boundaries. 
(2) For large  values of L/A, the  reflection  coefficients  calculated  from  the  dashed 

curve would be  much  larger  than  those  calculated  by  using  the  solid  curve. 

Epstein  profi le (eq. (B4)) 
""- Linear  prof i le (eq. (B 11) 
... ....... .... Asymptotic  approximation to 

l inear   prof i le  leq. IB21)) 

Transi t ion  length,  Llh 

Figure 14. -Magnitude  of  ref lect ion  coeff icient  for  Epstein  prof i le  and  l inear  prof i le. 

When the  transition  region is small  compared  to a wavelength, the difference  be- 
tween  the  different  types of profile  disappears. In the  case shown, the  solid  and the 
dashed  curves of figure 14 are in fair agreement as long as L/h is less  than  about 0.25.  
(See  also  ref. 29. ) 

For gaseous  plasmas, a continuous  Epstein  profile  seems far more  appropriate than 
profiles  containing a discontinuity.  This is true both  in  the  laboratory  (where a plasma 
sheath is formed at any  plasma  boundary) and  in the  ionosphere  (where  electron  density 
and collision  frequency  changes  must  always  be  continuous,  since  there a r e  no physical 
boundaries). 
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APPENDIX C 

REFLECTION OF ELLIPTICALLY  POLARIZED  WAVES  FROM  A  PLANE INTERFACE 

The  reflection  coefficients of a plane  interface  between two regions of constant  mag- 
netoionic  properties  have  been  discussed  in  reference 11. Solutions are obtained for the 
case of linearly  polarized  and  circularly  polarized  incident  radiation. When a general 
elliptically  polarized  wave is incident on such a boundary, the situation is more  compli- 
cated.  The  reflection  and  transmission  coefficients  can,  however,  be  determined  by 
consideration of the  boundary  conditions.  Our  formulation of the problem  essentially 
follows  that  given  in  reference 17. 

Consider a boundary  plane  between two regions of constant  magnetoionic  properties 
(fig.  15).  Below  the  plane of incidence, the indices of refraction of the two modes are 
n( and nb . (l) The  polarizations are pi1) and $); the  subscripts ('a'' and "b" denote 
the two characteristic  modes,  ordinary and  extraordinary. Above the  boundary, we have 
a 

J 

1 I I  
Incident Reflected 
a waves a and b 

waves 

Figure 15. - Reflection  from a plane  interface. 

Assume a type tta" wave incident  from below ("a" may  denote  either  ordinary o r  
extraordinary).  Assume  also,  for  the  time  being, that there  are  reflected r ra?v and "b" 
waves and transmitted '?aft and "b" waves. Our reflection  and  transmission  coefficients 
R and  T are defined  in  terms of the  x  component of the electric field.  The f i rs t  sub- 
script on R and  T  specifies  the  incident wave and  the  second  specifies  the  transmitted 
o r  reflected wave. The  polarization  for  any wave is the  ratio  E /Ex for that  wave  in 
a right-hand  coordinate  system, with propagation  in the Z direction and  the magnetic 
field  in  the  x-z  plane  (fig. 15). The wave polarizations obey the  relation pa% = 1 
(ref. 11). The  boundary  conditions  for E,, Ey, %, and  give,  respectively(ref.  17) 
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1 + Raa + Rab = Taa + Tab (C 1) 

Pa (1) (l +Raa)  +pb (1) Rab = P a  (2) Taa + % (2) Tab (C2) 

np) (  1 - Raa) - % (1) Rab = "FITaa + % (2) Tab  (C3) 

(1)  (1) (l) ( l )R - (2) (2) (2) (2)T (C 4) 
pa na ( l  - Raa) - nb % ab - "a  pa Taa + "b % ab 

Before  proceeding, let us  delete all reference  to  the  b wave to see when it is pos- 
sible  to  obtain  an  uncoupled  solution.  Equations (Cl)  to (C4) become 

1 + Raa = T, (C 5) 

pa ( 1) (1 + Raa) = (2) Taa (C6) 

n p ) ( 1 -  R ~ ~ )  = na (2) T,, (C7) 

(1) (1) (2) (2) na  Pa (1 - Raa) = "a Pa Taa (C8) 

Clearly,  unless  pp) = pf),  equations (C5) and (C6) are contradictory, as a r e  equations 
(C7) and  (C8). Only in  the  special  cases of propagation  along  the  magnetic  field  or  nor- 
mal  to  it will  pi1) = pi2'. In the  former  case,  p = d regardless of plasma  properties. 
In the latter  case,  the two modes  have  p = 0 and  p = for  the  ordinary  and  extraordi- 
nary  modes,  respectively. 

For a general  magnetoionic  mode, then, the  full  forms of equations  (Cl)  to (C4) a r e  
required.  They  can  be  conveniently  written  in  matrix  notation as 

1 -1 -1 

or  symbolically, 
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Each  matrix  element  in  equation (C10) is a complicated  function of plasma  properties 
and  wave frequency. In many cases,  solutions are most  easily obtained  numerically, 
and this is the  approach  taken  by  Thrane (ref. 17). However, in  the  partial  reflection 
experiments,  the  change  in  index of refraction at the reflecting  interface is assumed 
small. In such a situation,  equation (C10) should be solvable as a perturbation  about the 
trivial  case of no  reflection. In the  zero-order equation, we drop the change  in plasma 
properties, so that na,., (2) = n g \  = n (2) (1) Then, clearly, a, b' and pa, b = %, b = pa, b' 

and 

- 
1 1 -1 -1 

43 -5 

nb% "spa nb% 

a "b a nb - n n 

nb% "spa 

n a 

0 

[Ro]=[ ]  

[Pol = [PI = 

and the  zero-order equation is 

It is easily  seen  that  equation (C12) is a correct  solution  to  equation (C14), since  the 
vector [PI is identical  to  the third column of [Mol. Now, referring to equation  (C9),  the 
components of [MI have te rms  up to  second  order in the perturbation  quantities An 

0, e 
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1 
-p n n a a b  "a% a -"aPa n 

= 
2na%(pb - Pa) na% 

-n  n a b  

At any  level of approximation,  the  result [Rk] can be computed by  matrix  multiplication. 
The  first-order  result is probably  adequate  for our purposes and is given  by 

-Ana/2na 1 

We are  primarily  interested in the first two components, Raa and Rab. To first  order 

"a 

2na 
Raa = - - 
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The first result  (eq. (C21)) is quite  reasonable,  since it agrees with  the  Fresnel  reflec- 
tion  formula when Ana is small.  The  second  result (eq. (C22)) is  very  small,  since it 
has  the  factor (nb - na) and  both nb and na are close  to 1. We cannot rule out the 
possibility  that a second  order  term without the  factor (% - na) would be  comparable  to 
equation (C22), even if An and Ap were small. We therefore  calculate  the 
second-order  correction  to  equation (C22). Since  the  calculation is necessitated by  the 
fact  that na and nb are close  to unity, we set  them  equal  to  unity in the  second-order 
correction.  This  eliminates a good deal of tedious  work  and  does not, we  believe,  con- 
tribute  appreciable  errors  to  the  result. In the  interest of consistency, we also  calcu- 
late  the  second-order  correction  to  equation (C21) in  the same way. The  results are 

a, b 8, b 

Rab 2(g, Apa - pa) rnb nb - I + A("b - na) 

Equations (C21) to (C24) are  used  to  calculate  values of  Raa and Rab for a sample 
problem which w a s  posed by Thrane  (ref. 17). The  results are shown  in table I along 
with corresponding  results  obtained by Thrane  using  numerical  solutions of the  matrix 
equation. The  plasma  properties  assumed in the  calculation are  reasonable  for a height 
of 70 kilometers, which is  near the center of the  range  in which partial  reflection  ex- 
periments are performed. 

Values of na, nb,  pa, and g, were  calculated by using  the  generalized  magne- 
toionic  theory of Sen and  Wyller (ref. 14), with the  subscript a assigned  to the ordinary 
mode. The C script  integrals  in  this  theory  were  calculated  by  using  the  approxima- 
tions given by Burke  and Hara (ref. 15). 

Table I shows  that  the  first-order  perturbation  results  for Raa a r e  in good agree- 
ment with the  results  given by Thrane  (ref. 17). As expected,  the  second-order  results 
for Raa are not noticeably  different  from  the  first-order results. The  results  for the 
cross  reflection  coefficient Rab a r e  somewhat  different.  The  first-order  calculation 
agrees with the  results of reference 17 only when AN/N and Av/v are small. When 
AN/N or  AV/V equal unity, it is necessary  to  go  to  second  order  to  get good agree- 
ment.  The  smallness of the  cross  reflection coefficient, either  absolutely  or  compared 
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TABLE I. - REFLECTION  COEFFICIENT Raa AND 

CROSS-REFLECTION  COEFFICIENT Rab FOR 

SAMPLE  PROBLEM FROM REFERENCE 17 

[Gyrofrequency, 1.20 MHz; wave  frequency, 2.3 MHz; 
dip  angle, 50'; electron  number  density, N, 200 per 
cm ; collision  frequency, V, 4x10 per   sec.]  3 6 

Relative 
change  results  method 

from ref- 

Reflection  coefficient, Ra 

A N/N 
(with A W  = 0) 

0.01 
. 10 

1.00 

A w/w 
[with AN = 0) 

0.01 

. 10 
1.00 

4.8 1x1Ob6 
4. 81X10-5 
4.8  1X10-4 

1. 77X10-6 

1 . 7 2 ~ 1 0 - ~  
1 . 3 4 ~ 1 0 - ~  

4. 85X10-6 
4 . 8 4 ~ 1 0 - ~  
4 . 8 5 ~ 1 0 - ~  

1. 79X10-6 

1 . 7 4 ~ 1 0 - ~  
1 . 3 5 ~ 1 0 - ~  

4. 85X10-6 
4 . 8 4 ~ 1 0 - ~  
4 . 8 5 ~ 1 0 - ~  

1. 79X10-6 
1 . 7 4 ~ 1 0 - ~  
1 . 3 5 ~ 1 0 - ~  

Cross-reflection  coefficient, Rab 

A N/N 
,with A v  = 0) 

0 . 0 1  

6X10-' . 10 
5x lO- l '  

I. O X ~ O - ~  1.00 

A w / w  
with AN = 0) 

0.01 
. 10 

6X10-8 

2 . 4 ~ 1 0 - ~  1.00 
5 . 4 ~ 1 0 - ~  

5. 32x10- la  

5.36x10-' 
5. 37X10-8 

6. 07X10-8 
5. 82X10-7 
4. 30X10-6 

5 .37x lO- lo  

5 . 9 0 ~ 1 0 - ~  
1. 08X10-7 

6. 03X10-8 
5 . 4 6 ~ 1 0 - ~  
2. 48X10-6 
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to  the  direct  reflection  coefficient, is also  apparent. At an  altitude of 70 kilometers, 
the  cross  reflection  coefficients  are two to  four  orders of magnitude smaller  than  the 
related  direct  reflection  coefficients. 
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